P(x)=4x^2-7x+1

Simple and best practice solution for P(x)=4x^2-7x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=4x^2-7x+1 equation:



(P)=4P^2-7P+1
We move all terms to the left:
(P)-(4P^2-7P+1)=0
We get rid of parentheses
-4P^2+P+7P-1=0
We add all the numbers together, and all the variables
-4P^2+8P-1=0
a = -4; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·(-4)·(-1)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{3}}{2*-4}=\frac{-8-4\sqrt{3}}{-8} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{3}}{2*-4}=\frac{-8+4\sqrt{3}}{-8} $

See similar equations:

| 4/5(6x-7)=16 | | 3+4(x-3)=15 | | 0.15d+12=5+0.20 | | 3.44x+17.95-8.99x=3.45x-9.05 | | 3x+4(1+x)+10=0 | | 10-(6x+4)=5 | | 4n+6-2n=2(n+3 | | 3x÷4-2/7/9=1/3/4 | | 23-(2c=3)=2(c=5)+c | | n/5+20=30 | | 648=x2-3x | | F10=0.10x+2 | | x/5+8=18 | | 4/3x-2/5/7=1/2/3 | | -6(1-4x)-4x=-126 | | 4(x-2)-1=6x-2(2+x) | | x÷3-24=81 | | 5(3n+2)=6(6n+4)+3 | | 120=6(2-3v) | | (2/(x−4)(x−2))=(1/(x−4)+(3/(x−2)) | | .25(1/3k+9)=6 | | 32p+8=+8 | | 11x+35=3(2x+9)+5x+8 | | 5/9+p=15 | | 60+80+3x+7=180 | | 2/3y+10=6(1/18y+2) | | 70+40+x+78=180 | | |4m+4|-6=-34 | | 15=x=7 | | 74+50+x+63=180 | | 6x-1+10=55 | | a/4-70=180 |

Equations solver categories